Chemical Resistance GEHR PPS

·	conc. (%)	room temperature	60 °C	
1,4 Dioxane	100	+		
2-Hydroxypropionic acid	90			
Acetic acid	100			
Acetone	100	+	+	
Ammonia	conc.	+	+	
Ammonium chloride		+		
Amyl alcohol				
Apple juice				
Benzene		+	0	
Bleaching solution	12,5 CI			
Boric acid	100			
Brake fluid		+	+	
Butyl acetate		+	+	
Calcium chloride		+	+	
Carbon disulphide	100			
Carbon tetrachloride		+	0	
Chlorine, gas	100			
Chlorobenzene	100	+/0	0	
Chloroform		+/0	0	
Citric acid	10			
Cresol				
Cyclohexanone	100			
Cyclohexene	100			
Diesel fuel	100	+	+	
Diethylene oxide, THF		+	+	
Ethyl acetate	100	+		
Ethyl alcohol	96	+	+	
Ethylene chloride	100			
Food oil	100			
Formaldehyde, aqu	40			
Formic acid	10			
Frost protection agent	10	+	+	
Fuel, aromatic free				
Glycerin	100	+	+	
Glycol	100	T	T	
Heating oil	100			
Heptane	100			
Hydrochloric acid	100	4	0/-	
Hydrochloric acid		+	0/-	
	conc.	-		
Hydrofluoric acid	40			
Hydrogen peroxide	10			
Hydrogen sulphide	400			
Isopropyl alcohol	100	+		
Linseed oil				
Mercurochrome	400			
Methyl alcohol	100	+	+	
Methyl ethyl ketone	100	+	+	

DokNr.	Name	Erstelldatum/Geändert am	Erstellt von	Seite
PPS_engl	Chem-Best	11.12.2007	QM	1 von 2

Chemical Resistance GEHR PPS

	conc. (%)	room temperature	60 °C
Methylene chloride	100	o/-	
Milk			
Mineral oils, aromatic free		+	+
Nitric acid	10	+	o/-
Nitric acid	50	-	
Nitrobenzene			
Oxalic acid			
Ozone, gas	ca. 0,5 ppm		
Paraffine oil	100		
Perchloroethylene		+	0
Petroleum ether	100		
Petroleum, aromatic free	100		
Phenol, aqu	ca. 9	+	0
Phosphoric acid	50	+	+
Potassium hydroxide liquor	50		
Premium Fuel		+	+/0
Propyl alcohol			
Pyridine			
Silicone oil			
Sodium carbonate, aqu			
Sodium chloride, aqu		+	+
Sodium hydroxide liquor	15	+	+
Sodium hydroxide liquor	60	0/-	
Sodium hyrogen sulphite			
Sodium nitrate, aqu			
Sodium thiosulfate			
Sulphuric acid	96	+/o	+/0
Tetrahydrofurane	100	+	0
Toluene	100	+/0	0
Transformer oil		+	+
Trichloroethylene	100	+	-
Vinegar, standard	5-10		
Water		+	+/0
Xylene		+	+/0

Symbolism for the description of the chemical resistance

+ = resistant	(only small changes of the weight, dimensions and properties. According our experiences there is no permanent damage expect).
o = partly resistant	(medium changes of the properties. At longer contact time there are permanent damages recommended e.g. degradation of the macro molecular structure).
 = non resistant 	(strong and permanent degradation in short contact time e.g. stress cracking).
= not tested	(no tests were done, no recommendations are possible).

The figures indicated here are approximate values. They may be affected by the temperature, operating time, concentration and stress level of the component involved, by mechanical loads, etc., and the user is not released therefore from the obligation of performing checks and trials of his own. The values indicated here have been compiled on the bases of current experiences and findings. Any legally binding guarantee of certain properties, or any suitability for a specific application cannot be inferred from the present data.

DokNr.	Name	Erstelldatum/Geändert am	Erstellt von	Seite
PPS_engl	Chem-Best	11.12.2007	QM	2 von 2